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1. What is the sum of the real roots of the cubic polynomial x3 − x2 − x− 2?

Proposed by: Ayush Aggarwal

Answer: 2

The polynomial x3−x2−x− 2 factors as (x− 2)(x2+x+1). x2+x+1 is a quadratic,
and through the quadratic formula, it has only complex roots. Thus, the only real root
of x3 − x2 − x− 2 is 2, which is our answer.

2. A painter can paint a painting in 15 days. He and his apprentice can together do it in
10 days. How long does it take the apprentice to paint a painting alone?

Proposed by: Jinwoo Jeong

Answer: 30

The rate at which the painter paints is 1
15

paintings per day. Let the rate of his
apprentice be a paintings per day. We’re given that together, their rate is 1

10
paintings

per day, so we have 1
15

+ a = 1
10
, yielding a = 1

30
paintings per day. It then takes 30

days for the apprentice to paint a painting.

3. A magic product square is an N × N grid of squares with each square containing a
positive integer such that the product of the numbers in every row, column and main
diagonal of the square is the same. A certain 3 × 3 magic product square has this
common product equal to 5832. What integer is in the middle square of the grid?

Proposed by: Ayush Aggarwal

Answer: 18

Consider the following magic square: a b c
d e f
g h i


Let the common product be P . By the given properties, we have aei = beh = ceg = P ,
and multiplying them together, we have aibhcge3 = P 3. However, we also have that
abc = ghi = P , so aibhcge3 = abcghie3 = P 2e3 = P 3, and so e = 3

√
P . Since P = 5832,

the cube root of 5832 is e = 18.

1



4. Let a⋆b = ab+a+b. Ifm and n are positive integers such that 0⋆m⋆1⋆2⋆n⋆3 = 5⋆6⋆7⋆8,
what is the minimum value of m+ n?

Proposed by: Roger Fan

Answer: 21

The operation a ⋆ b can be written as (a+ 1)(b+ 1)− 1. By calculation, we even have
a ⋆ b ⋆ c = (a + 1)(b + 1)(c + 1) − 1, and this extends further. Thus, we then have
1 · (m+ 1) · 2 · 3 · (n+ 1) · 4 = 6 · 7 · 8 · 9. Simplifying, we have (m+ 1)(n+ 1) = 126.
m + 1 + n + 1 is minimized when m + 1 and n + 1 are closest together, which occurs
when one is 9 and one is 14. As a result, we have m+ n = 21.

Remark. ⟨R, ⋆⟩ ∼= ⟨R, ·⟩ due to the isomorphism ϕ(x) = x+ 1.

5. What is the sum of the integer solutions of the equation (x2 + 13x+ 21)(x
2−6x+8) = 1?

Proposed by: Ayush Aggarwal

Answer: 4

This problem is a classic. Given two integers, ab = 1 when either a is 1, b is 0, or a is −1
and b is even. These three cases are all quadratics, which can be checked individually.

x2 + 13x+ 21 = 1 has no integer solutions, so that case is done.

x2 − 6x+ 8 = 0 happens when x = {2, 4}, which are both solutions.

x2+13x+21 = −1 when x = {−2,−11}. However, when x = −11, x2− 6x+8 is odd,
which isn’t a solution. Our only solution from this case is thus −2.

Our final solutions are then {−2, 2, 4}, which sum to 4.

6. How many ways are there to tile an 10-by-3 board with 10 indistinguishable 3-by-1
trominos, such that none of the trominos overlap?

Proposed by Arul Mathur and Alan Lee

Answer: 28

We can employ recursion here. Let f(n) be the number of ways to tile a n-by-3 board
with trominos. To find our recursion, consider the last few columns of the board. If we
have a vertical tromino that takes a full column, we are left with f(n− 1) ways to tile
the remaining n− 1-by-3 board. If the tromino is horizontal, we see that the two rows
above it must also have a horizontal tromino, as a vertical tromino cannot fit there.
This completes 3 of the columns, and there are f(n−3) ways to tile the remaining part
of the board. Our recursion is thus f(n) = f(n− 1) + f(n− 3). We can quickly check
that f(1) = 1, f(2) = 1, and f(3) = 2. Using these base cases, we find that f(n) = 28.

7. What is 3
√
33 + 43 + 53 + 63 + · · ·+ 223?

Proposed by: Ayush Aggarwal

Answer: 40

We must use the property that 13 + 23 + 33 + · · · + n3 = (1 + 2 + 3 + · · · + n)2. Let
S = 33+43+· · ·+223. By the identity mentioned above, we have S+8+1 = (1+2+3+
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· · ·+22)2 = 2532. Using difference of squares, we get S = 2532−32 = 250 ·256 = 29 ·53.
Therefore 3

√
S = 40.

8. Monty Hall runs a game show where there are n closed doors. Behind one randomly
chosen door is a car, and behind the other n− 1 doors are goats. Om, the contestant,
is called up to play, and chooses a door to open. However, before the door is opened,
Monty Hall opens m of the other n − 1 doors, revealing only goats. Monty Hall then
asks Om whether he would like to switch to one of the other n−1−m unopened doors.
Surprisingly, Om astutely notices that switching would exactly double his chances of
winning a car. Given that 1 ≤ n,m ≤ 2022 and m < n − 1, how many possible
combinations of (n,m) are there?

Proposed by: Roger Fan

Answer: 1010

The probability of choosing a car on the first turn is 1
n
. If Om does not switch, then

this is his probability of winning.

Otherwise, if he switches, there is a n−1
n

probability the car is not in his original door.
Assuming that he did not originally choose the car’s door, out of the n−1 other doors,
m are closed, so he has a 1

n−m−1
chance of switching to the right door. Multiplying

these probabilities together yields n−1
n(n−m−1)

, which we are told is 2
n
.

Solving, we have n − 1 = 2(n − m − 1), and n = 2m + 1. The solutions where
1 ≤ n,m ≤ 2022 are then all where n is an odd number greater than 3 but at most
2021, so this gives 1010 solutions.

9. For primes p, there are two solutions to the equation p | (p− 5)p−5 − (p− 6)p−6, where
a | b if a divides b. What is the sum of these two solutions?

Proposed by: Arul Mathur

Answer: 302

We will use modular arithmetic to solve this problem. Considering the equation
(mod p) gives us the following congruence:

(p− 5)p−5 ≡ (p− 6)p−6 (mod p).

We simplify the bases mod p, and we use the fact that ϕ(p) = p − 1 to simplify the
exponent. Our relation now becomes

(−5)−4 ≡ (−6)−5 (mod p)

625 ≡ −7776 (mod p)

8401 ≡ 0 (mod p)

Therefore p|8401. Factoring leaves us with 8401 = 31 · 271, so the answer is 302.
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10. Find 22! (mod 2024).

Proposed by: Saumya Singhal

Answer: 528

Factoring, we have 2024 = 8 · 11 · 23. 22! is clearly divisible by 8 and 11, and by
Wilson’s theorem, 22! is 22 (mod 23). Let 22! = 88k (mod 2024), and by taking this
(mod 23), we have 88k ≡ 22 (mod 23). 88 ≡ 19 (mod 23), and calculating the inverse
of 19 using the Euclidean algorithm, we get 17. Thus, k ≡ 17 · 22 ≡ 6 (mod 23), so
88k ≡ 528 (mod 2024).

11. Tanush has 2022 distinguishable objects and wants to paint each of them 1 of 6 distinct
colors, numbered 1 to 6. However, he requires that the total number of objects painted
in the colors 1 and 2 must be odd. Let S be the number of ways there are for him to
do this. If k is the largest integer such that 2k divides S, find k.

Proposed by: Roger Fan

Answer: 2024

Since we want the total number of objects painted in colors 1 and 2 to be odd, we can
group them together as being painted by a single color which we can call color 7 for
the moment. We will come back to separating them later, but it is important to group
them first. Then for all odd integers n between 1 and 2021 inclusive if we have n total
objects painted in color 7, the number of ways this can be done is

(
2022
n

)
· 42022−n. We

get
(
2022
n

)
since there are that many ways to choose which n of the 2022 numbers will

be painted in color 7 and the 42022−n comes from the fact that the remaining 2022− n
objects can be painted in any of the 4 colors from 3-6.

Now we need to separate color 7 into colors 1 and 2. This is actually quite simple as
continuing from above if we have n total objects with color 7, then there are 2n ways
to paint these n objects in the colors 1 and 2 since each object with color 7 can either
be color 1 or color 2.

Combining these we get for all odd integers n from 1 to 2023, the number of ways is(
2022
n

)
· 42022−n · 2n which simplifies to

(
2022
n

)
· 24044−n. This gets us the sum(

2022

1

)
· 24043 +

(
2022

3

)
· 24041 + · · ·

(
2022

2019

)
· 22025 +

(
2022

2021

)
· 22023.

You may see that this is quite similar to an expression for each term of the expansion
of (2 + 1)2022 using the binomial theorem. To get to this we can factor out 22022 from
every term and we are left with

22022 ·
((

2022

1

)
· 22021 +

(
2022

3

)
· 22019 + · · ·

(
2022

2019

)
· 23 +

(
2022

2021

)
· 21

)
.

We now want to compute the odd terms of the expansion of (2 + 1)2022 which can be
done by using a roots of unity filter. In this case, since we are only doing every second

term this is fairly simple and we get that 22022 · (2+1)2022−(2−1)2022

2
. This simplifies to
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22021 ·(32022−1) and since we want the greatest power of 2 that divides this the problem
remains to find the greatest power of 2 that divides 32022− 1 which we can check using
some simple modular arithmetic. We get that this is divisible by 23 but not 24 so our
final answer is 2021 + 3 = 2024.

12. Richard has a combination lock that has the numbers 1 through 10. It takes in a code
of 3 numbers 1-10. However no code can have 2 of the same number consecutively, so
there are 10 · 9 · 9 = 810 total codes. How many of these codes are there such that the
sum of its 3 numbers is divisible by 3?

Proposed by: Roger Fan

Answer: 276

Let the 3 numbers, in order, be a, b and c. If there were no restrictions on a, b, and c,
we may use generating functions to find the number of codes where 3|a + b + c. Our
ordinary generating function is f(x) = (x + x2 + · · · + x10)3, and using the Roots of

Unity Filter yields f(1)+f(ω)+f(ω2)
3

= 1000+1+1
3

= 334 total such codes (ω = e
iπ
3 ).

What if a = b? Our generating function with a = b is then g(x) = (x2 + x4 + · · · +
x20)(x+ x2 + · · ·+ x10), and taking the roots of unity filter once again yields 102

3
= 34

codes where 3|a+ b+ c.

Finally, if a = b = c, we note there are 10 codes for which 3|a+ b+ c.

Taking all these together, we wish to find the number of codes where a ̸= b ̸= c.
We now use the principle of inclusion-exclusion: our desired number is just the total
number of codes without restrictions, minus the number of codes where a = b, minus
the number of codes where b = c, plus the number of codes where a = b = c. The
number of codes were b = c is simply the number of codes where a = b by symmetry,
so we have 334− 34− 34 + 10 = 276, as claimed.

13. Triangle ABC has AB = 25, BC = 17, and AC = 26. Suppose that from an arbitrary
point in the triangle, an infinitely small object is launched so that it bounces infinitely
against the walls of the triangle (you may assume it never hits a vertex). Eventually,
the motion of this projectile converges to a triangle, which has points A1, B1, and C1

on sides BC, AC, and AB respectively. Let the incenter of triangle A1B1C1 be I. If
the length of IB can be expressed in the form a

b
such that a and b are relatively prime

integers, compute a+ b.

Proposed by: Steve Zhang

Answer: 103
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A1B C

A

C1

B1

I

The main idea is that A1B1C1 is the orthic triangle of ABC, or that A1, B1, and C1

are the feet of the altitudes from A, B, and C.

We clearly have that ∠C1A1B = ∠B1A1C = a, ∠A1B1C = ∠C1B1A = b, and
∠B1C1A = ∠A1C1B = c. Note that ∠A + b + c = a + ∠B + c = a + b + ∠C = 180.
From this, it becomes clear that ∠A = a, ∠B = b, and ∠C = c.

It is well known that the incenter of the orthic triangle is simply the orthocenter of
the triangle. Thus, I is the orthocenter of ABC. Now construct BB1 and AA1.
Note that they must intersect at I. Using Heron’s we find that [ABC] = 204. Since
[ABC] = BB1·AC

2
, we get that BB1 = 204

13
. Similarly, we can find that AA1 = 24,

implying that BA1 = 7 by the Pythagorean theorem. Finally, IB
BC

= A1B
BB1

by similar

triangles, so IB = 91
12
, resulting in the final answer 91 + 12 = 103.

14. Equilateral △ABC has center O and side length 12
√
3. △AOB is colored red, △BOC

is colored blue, and △COA is colored green. A circle with radius 1 is randomly placed
such that it’s completely contained within △ABC. The probability it touches exactly
2 colors can be represented as a−b

√
3−π

c
√
3

, where a, b, and c are positive integers. Find
a+ b+ c.

Proposed by: Roger Fan

Answer: 280

Consider the center of the circle, M . Note that M must be contained in the equilateral
triangle with center O and side length 10

√
3.

Let P be the region colored red. Depicted in Figure 1 is the region that M must be in
for the circle to touch P . Note that this region consists of P , two trapezoids, and 1

6
of

a circle.
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Figure 1: If M is in the pink or red region, the circle will touch the red region.

Figure 2: If M lies in the pink region, then the circle touches all 3 colors.

Without loss of generality, assume M lies in the region directly to the right of region
P , which is colored green. In Figure 2, we may overlay the region in which M must
lie for the circle to touch the red region, with the region in which M must lie for the
circle to touch the blue region. The intersection of these two regions, colored in pink,
is where M must lie for the circle to touch all 3 circles. Note that it contains both
triangles and arcs.

From here, the problem becomes more manageable. Assuming that M lies in the green
region, consider the region in which M must lie for the circle to touch at least 2 colors.
This can be composed of two trapezoids, which together give an area of 20− 4

√
3

3
. Now,

we must omit the region in which M must lie for the circle to touch 3 colors. This is
the pink region in Figure 2, and has total area

√
3
3
+ π

6
. Thus, the region that M must

lie in for the circle to touch exactly 2 colors has area 20− 5
√
3

3
− π

6
.

In the green region, the total area that M can lie in has area 25
√
3. Our desired
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probability becomes

20− 5
√
3

3
− π

6

25
√
3

=
120− 10

√
3− π

150
√
3

As a result, our answer is 120 + 10 + 150 = 280.

15. Roger abhors doing his Epsilonmath homework. He starts with 3 questions to do,
denoted c = 3, and he finishes when c = 0. However, he also starts with a spite value
of s = 1. Given s, the probability of him getting his next question correct is 2

s+2
. If he

gets it right, c decreases by 1. If not, his spite s increases by 1 and he hates the world
just a little bit more. On average, how many attempts will it take for him to complete
the homework?

Proposed by: Roger Fan

Answer: 10

Solution by: Timothy Herchen

We will actually solve a more general problem than the original question. Observe that
if he does c questions and has f failures (incorrect attempts), he makes c + f total
attempts. We will analyze the behavior of the number of failures rather than attempts
to simplify matters.

Let fn(s) be the expected number of failures before successfully completing n questions,
beginning with spite s. (The original question is f3(1) + 2.) We observe the following
recurrence relations:

f0(s) = 0 (1)

fn+1(s) =
2

s+ 2
fn(s)︸ ︷︷ ︸

success

+

(
1− 2

s+ 2

)
(fn+1(s+ 1) + 1)︸ ︷︷ ︸
failure

=
2

s+ 2
fn(s) +

s

s+ 2
(fn+1(s+ 1) + 1) (2)

Suppose that fn(s) = ans+ bn. (This is not yet known, but it will allow us to confirm
or deny the linearity of fn.) Then an = bn = 0. Applying (2) and expanding the left
and right sides, we get:

fn+1(s) =
2

s+ 2
fn(s) +

s

s+ 2
(fn+1(s+ 1) + 1)

an+1s+ bn+1 =
2

s+ 2
(ans+ bn) +

s

s+ 2
(an+1(s+ 1) + bn+1 + 1)

(s+ 2)(an+1s+ bn+1) = 2(ans+ bn) + s(an+1(s+ 1) + bn+1 + 1)

an+1s
2 + (2an+1 + bn+1)s+ 2bn+1 = an+1s

2 + (2an + an+1 + bn+1 + 1)s+ 2bn.
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Equating coefficients of s, we obtain
an+1 = an+1

an+1 = 2an + 1

bn+1 = bn

which has a unique solution. In particular, since a0 = b0 = 0, we have an = 2n − 1 and
bn = 0. So fn(s) = (2n−1)s. The answer to the original problem is (23−1)(1)+3 = 10.
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