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1. Let S = 1! + 3! + 5! + 7! + 9! + · · ·+ 99!. What are the last two digits of S?

Proposed by: Jinwoo Jeong

Answer: 47

If n ≥ 10, n! contains at least 2 factors of 5 and 2 factors of 2, so it must be divisible
by 100. To find the last two digits of S, we only need to consider the first 5 terms,
1! + 3! + 5! + 7! + 9!. Computing the last 2 digits of each of these terms yields S ≡
1! + 3! + 5! + 7! + 9! ≡ 1 + 6 + 20 + 40 + 80 ≡ 47 (mod 100), so the last 2 digits of S
must be 47.

2. Let n be the number of 4-digit numbers which have at least one digit (in base 10) that
is a 2, 3, or 5. Find 10n.

Proposed by: Roger Fan

Answer: 69420

Consider the 4-digit numbers that contain no 2s, 3s, or 5s. To be a 4-digit number,
the first digit must also be nonzero, which leaves 6 choices for the first digit and 7 for
the other 3. Thus, there are 6 · 73 = 2058 numbers without any 2s, 3s, and 5s. The
total number of 4-digit numbers is 9000, so subtracting, we get that the number of
4-digit numbers containing at least one 2, 3, or 5 is n = 9000 − 2058 = 6942. Thus,
10n = 69420.

3. Let S(n) denote the number of factors of an integer n. Let T (n) denote the number of
odd factors of an integer. For how many positive integers n < 1000 is S(n) = 7 ·T (n)?
Proposed by: Ayush Aggarwal

Answer: 8

For each odd factor of an even number n, we can multiply it by 2 to get another factor
of n. In fact, if 2k divides n, we can multiply any odd factor by 2k to get an even
factor. Thus, the ratio of the odd factors to the even factors must be 1 to k, if 2k is
the largest power of 2 that divides n. From this, we know S(n) = (k + 1)T (n), and
since the condition states that S(n) = 7T (n), we must count the number of integers
n < 1000 such that 26 = 64 divides n and 27 does not. Noting that these integers are
an arithmetic sequence 64, 192, 320, · · · 960, we count 8 solutions.
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4. Right triangle ABC has a right angle at B. Construct a circle such that it is tangent
to both AB and BC. AC intersects the circle at points X and Y such that X is on
line segment AY . Suppose that AC = 32, AX = 12, and CY = 5. If the radius of the
circle is expressed in the form

√
a− b such that a and b are positive integers, compute

a+ b.

Proposed by: Steve Zhang

Answer: 510

B

A

CN

M

X

Y

x

Suppose that our circle is tangent to AB at point M and BC at point N . Note that by
power of a point, we have AM2 = AX · AY = 12 · 27 = 324, implying that AM = 18.
Similarly, CN2 = CY · CX = 5 · 20 = 100, implying that CN = 10. Now note that
since BM and BN are both tangents to the circle, we have that BM = BN . Let
BM = BN = x. Furthermore, since BM ⊥ BN , x is also the radius of the circle.
Then, by Pythagorean theorem on △ABC, we have that

(x+ 18)2 + (x+ 10)2 = 322.

Solving the quadratic, we get that x =
√
496− 14.

5. Find the sum of all positive k that satisfy the following conditions:

• k < 343

• k + 2 has 3 divisors

• k · 2 has 4 divisors

• k2 has 3 divisors

Proposed by: Alan Lee

Answer: 244
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We go through the conditions one by one. k + 2 has 3 divisors if and only if it is the
square of a prime. Then, if 2k has 4 divisors, counting factors yields that k is either
an odd prime or 8. However, 8 + 2 = 10 is not a square, so 8 is not a solution, and k
must be an odd prime. Finally, the condition k2 has 3 factors also tells us that k must
be a prime, which we already know.

Thus, we count all integers k such that k is an odd prime and k + 2 is the square of
a prime. The only squares of primes under 343 are 22, 32, 52, 72, 112, 132, and 172, so
setting each one to k + 2 and checking if k is an odd prime yields k = {7, 23, 47, 167}.
The sum of our solutions is then 244.

6. Let n be the answer to this question. If x4 − 8x3 + 24x2 − 32x + 14 = n, find the
product of all real values of x.

Proposed by: Andrew Peng

Answer: 2

x2 − 8x3 + 24x2 − 32x+ 14 = (x− 2)4 − 2 = n, so we have that the real solutions of x
are x = 2± 4

√
n+ 2. The product of these two roots is 4−

√
n− 2, which we are given

is n, so 4−
√
n+ 2 = n. Then, 4−n =

√
n+ 2 and n2 − 8n+16 = n+2. Solving this

quadratic yields n = {2, 7}. However, the solution n = 7 is extraneous, as −3 ̸=
√
9,

so n = 2.

7. Sean starts with an initial point (x, y) on the plane. Once every second, he moves the
current point (x, y) to the point (0.1x2 − 0.1y2, 0.2xy). If we start with some specific
initial points, they will get infinitesimally close to the origin as time goes on. Let A
be the area of the set of all initial points that approach (0, 0). Find ⌊A⌋.
Proposed by: Roger Fan

Answer: 314

There are many ways to do this problem, but complex numbers provide a natural way
of describing the transformation. Consider the function f(z) = z2

10
. If z = x+ yi, then

f(z) = 0.1x2 − 0.1y2 + 0.2xyi. Thus, it suffices to find the region of complex numbers
such that after repeated application of f(z), z tends towards 0.

Consider the magnitude of f(z). |f(z)| = |z|
10
|z|. If and only if |z|

10
< 1, then |f(z)| will

be smaller than |z|, and so f(z) will be closer to the origin than z.

Thus, all points such that |z| < 10 will slowly move towards the origin as time goes on.
Meanwhile, all points such that |z| > 10 will diverge towards infinity. Our desired set
of points is then the region such that |z| < 10, which is the circle of radius 10 centered
around the origin. The area A is 100π, and ⌊A⌋ = 314.

Remark. This problem is similar in many ways to, surprisingly, the Mandelbrot Set.
The Mandelbrot Set is a set of complex numbers that arises from the study of complex
dynamics, and is formed by first starting with a point z = 0 in the complex plane.
Then, given some c, repeatedly move z to the point z2+ c. If z spirals towards infinity,
then c is not in the Mandelbrot Set. Otherwise, c is in the Mandelbrot Set. The pretty
images you see on Google are where each pixel represents a complex number c, and if
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c is in the Mandelbrot Set it’s colored black. Otherwise, it’s colored some color based
on how quickly it diverges. Cool stuff!

8. A box has 6 slips of paper numbered 1 through 6. 6 people, also conveniently numbered
1 through 6, each draw a slip of paper from the box, but out of sheer luck, none of
them choose their own number. Each person has an object, and each second, they give
their current object to the person whose number they chose. After 6 seconds, let m

n
be

expected number of people who have their own object. What is m+ n?

Proposed by: Roger Fan

Answer: 299

A derangement is a permutation such that no object stays in the same place. Using
the principle of inclusion-exclusion, it can be proven that the number of derangements

of size n, denoted Dn, is n!
∑n

k=0
(−1)k

k!
.

The problem really is asking that given a random derangement σ, what is the expected
number of fixed points of σ6?1

Break σ down into cycles.2 Any cycle of size 2, 3, or 6 will always become the identity
permutation when applied 6 times.3 Because σ is a derangement, there can’t be a cycle
of length 5, because then the person not included in the cycle must be a fixed point,
which by definition isn’t allowed. Thus, the only way for σ6 to not have a fixed point
is for σ to have a cycle of length 4.

Consider any person P . We can find the probability that after σ6, P does not end up
with their original object, which is the same probability that P is in a cycle of length
4. We must first choose (in order) the 3 other people in the cycle with P , and there
are 5 · 4 · 3 = 60 ways to do this. The other 2 people not in the cycle must then be in
a cycle of size 2, since there are no fixed points. Thus, there are 60 ways to have P
be in a cycle of size 4, and we know there are 265 ways to have a derangement with
6 people. The probability that P is in a cycle of size 4, then, must be 60

265
= 12

53
. The

probability that P ends up with their original object is 1 minus this fraction, which is
41
53
, and since there are 6 total people, the expected number of people who end up with

their object is 6 · 41
53

= 246
53
, and 246 + 53 = 299.

9. Let f(1) = 0. Then, for all n > 1, let f(2n) = f(n)2, and let f(2n + 1) = f(n)2 + 1.
How many integers k from 1 to 2022 inclusive are there such that f(k)) ≥ f(k + 1)?

Proposed by: Roger Fan

1Too much jargon? σ6 denotes applying σ 6 times, which is what is happening in the problem. A fixed
point of a permutation is an object that goes to itself. Thus, a fixed point of σ6 would be an object that
goes back to its owner when σ6 is applied.

2Jargon to English Translation: Any permutation can be broken down into a set of cycles. For example,
consider the permutation of size 3 where person 1’s object goes to person 2, 2 to 1, and 3 to 3. There’s a
cycle from 1 to 2 to 1 to 2 and so on, and there’s a cycle from 3 to 3 to 3 and so on.

3Jargon to English Translation: Consider a cycle where person 1 gives to 2, who gives to 3, and back to
1. When you run this cycle 3 times, then everyone ends up back with their original object, which we call the
identity permutation! Convince yourself that every cycle of length m will become the identity permutation
after km applications, where k is an integer.
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Answer: 55

It may be helpful to construct a tree where f(n) is connected to f(2n) and f(2n+ 1),
such that each row becomes f(2k), f(2k + 1), f(2k + 2), . . . , f(2k+1 − 1).

f(1) = 0

f(2) = 0

f(4) = 0

0

0 1

1

1 2

f(5) = 1

1

1 2

2

4 5

f(3) = 1

f(6) = 1

1

1 2

2

4 5

f(7) = 2

4

16 17

5

25 26

We first note that f(2n) = 0 for all integral n, since f(1) = 0, and by induction
f(2n) = f(2n−1)2 = 0. All other f(k) where k isn’t a power of 2 are non-zero.

If n = 2k is even, then we have that f(n + 1) = f(k)2 + 1 > f(k)2 = f(2k) = f(n),
so if f(n) ≥ f(n + 1), then n must be odd. Let n = 2k + 1, so that f(k)2 + 1 ≥
f(k + 1)2. If f(k) ≥ f(k + 1), this already is true. However, if f(k) < f(k + 1), then
f(k + 1)2 − f(k)2 ≤ 1 if and only if f(k + 1) is 1 or 0 and f(k) is 0, as the difference
between f(k + 1)2 and f(k)2 would be greater than 1 otherwise.

Thus, we have that f(2k + 1) ≥ f(2k + 2) when f(k) ≤ f(k + 1) or f(k) = 0,
f(k + 1) = {0, 1}.
We claim that for all r > 1, in the rth row of the tree above, there are r − 1 values
of f(n) where f(n) ≥ f(n + 1). (In other words, there are r − 1 values of n where
2r−1 ≤ n < 2r and f(n) ≥ f(n+ 1).) We prove this by induction.

The base case for r = 2 can be computed, for which there indeed is only 1 solution
when f(3) ≥ f(4).

Assume the hypothesis holds for all previous rows. In the (r−1)th row, let there be r−2
solutions to f(n) ≥ f(n+1). Then, from before, we know that f(2n+1) ≥ f(2n+2).
(Also note f(2n+ 1) necessarily lies in the rth row.) These form r− 2 solutions in the
rth row, but this is only our first case.

For our second case, f(2r + 1) = f(2r + 2) = 1, so that f(2r + 1) ≥ f(2r + 2),
which provides an extra solution. Because we’ve covered both cases, our search was
exhaustive, and there are exactly r − 1 solutions in the rth row, and we have proven
the hypothesis.4

As a final solution, note that in the first row, f(1) ≥ f(2), as they are both 0, so there
is actually 1 solution in the 1st row, and r − 1 for the other rows.

4There are a couple details missing in this proof, and the reader is welcome to fill in the blanks for
themself.
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The problem asks to find all k from 1 to 2022 for which f(k+1) ≥ f(k). If the problem
asked to find all k from 1 to 2047 = 211 − 1, that would include exactly 11 rows in our
tree, giving us 1 + 1 + 2 + · · · + 10 = 56 solutions. However, we claim that exactly
1 of these solutions is above 2022, giving us 55 solutions. Namely, this solution is
f(2047) ≥ f(2048) = 0.

It is possible to prove that the second largest solution for which f(n) ≥ f(n+1) under
2n is 3 · 2n−2 − 1 using induction by noting that the second half of each row in our
tree always forms a strictly increasing sequence without any 0s. In fact, it is possible
to show a stronger statement, that the distance between consecutive solutions in each
row are 2, 4, 8, 16, 32, · · · respectively. This result can be proven by induction and its
proof would not really add any value here, so it is left as an exercise to the reader.

In the end, however, there are no other solutions under 2048 that are greater than 2022
other than 2047, which leaves us with precisely 55 total solutions.

10. A regular tetrahedron has two vertices at (0, 0, 0) and (18, 8, 14). Let the minimum
possible x coordinate of one of the other two vertices be a −

√
b, where a and b are

both positive integers. Find a+ b.

Proposed by: Ayush Aggarwal

Answer: 204

Because all faces of the tetrahedron are equilateral triangles, it is the same to fix two
vertices A and B of an equilateral triangle and find the minimum x-coordinate of the
third vertex C. For friendlier computation, let A = (−p,−q,−r) and B = (p, q, r).

As we rotate the equilateral triangle in 3-D space, the path of C traces out an ellipse.
C must lie in the perpendicular bisector plane of the segment AB. Because we’ve
chosen the midpoint of AB to be (0, 0, 0), this plane contains the origin and has the
normal vector ⟨p, q, r⟩. The equation of the plane is then px+ qy + rz = 0, given that
C is (x, y, z).

The distance from C to the origin must be the length of the altitude of the equilateral
triangle. AB = 2

√
p2 + q2 + r2, so we have the altitude is

√
3(p2 + q2 + r2). Now, we

have x2 + y2 + z2 = 3(p2 + q2 + r2).

Fix the x-coordinate of C. We have rz = −(px+ qy), so

r2(x2 + y2 + z2) = r2x2 + r2y2 + (px+ qy)2 = (q2 + r2)y2 + (2pqx)y + (r2 + p2)x2

We also have that x2 + y2 + z2 = 3(p2 + q2 + r2), so

(q2 + r2)y2 + (2pqx)y + (r2 + p2)x2 = 3r2(p2 + q2 + r2)

This is a quadratic in y, and at the minimum x-coordinate of C, there is only 1 unique
solution.5 Thus, we must choose x so that the discriminant of this quadratic is 0.

5Think about this in 3-D space, and convince yourself that this is true.
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Calculating the discriminant yields

4p2q2x2 − 4(q2 + r2)(x2(r2 + p2)− 3r2(p2 + q2 + r2)) = 0

Solving for x2 starts out daunting but turns out to be very elegant.

(p2q2 − r4 − r2q2 − r2p2 − p2q2)x2 = −3r2(p2 + q2 + r2)(q2 + r2)

r2(p2 + q2 + r2)x2 = 3r2(p2 + q2 + r2)(q2 + r2)

x = ±
√

3(q2 + r2)

This is an astonishingly simple answer, and even more surprising is the fact that x is
completely independent of p!6

We can apply this to the original problem by translating A and B such that their
midpoint is on the origin. We then have that the minimum x is −

√
3(42 + 72) =

−
√
195. Translating back to the original A and B yields 9−

√
195, so our final answer

is 204.

It turns out there are actually many other ways to do this problem. The minimum
x-coordinate occurs when the equilateral triangle is perpendicular to the yz plane, at
which point one can solve using other methods.

6We thought about excluding the x-coordinate in the problem statement, but we felt like that might be
too evil.
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